Determination of the electroaffinity and potential barrier heights at polymer/ metal interfaces of poly(4,7-benzothiophene vinylene) (PBTV)

Author(s):  
R. Berton ◽  
I. A. Hümmelgen ◽  
J. Gruber ◽  
R. W. C. Li ◽  
E. L. de Sá ◽  
...  
2019 ◽  
Vol 89 ◽  
pp. 30-39 ◽  
Author(s):  
Erik Saborowski ◽  
Robert Kießling ◽  
Axel Dittes ◽  
Gerd Paczkowski ◽  
Jörn Ihlemann ◽  
...  

1984 ◽  
Vol 40 ◽  
Author(s):  
P. N. Sanda ◽  
J. W. Bartha ◽  
B. D. Silverman ◽  
P. S. Ho ◽  
A. R. Rossi

AbstractESCA studies of two molecules which are similar in structure to the PMDA and ODA constituents of the PMDA-ODA polyimide monomer are discussed. Their interaction with in-situ evaporated Cr and Cu films are compared. The PMDA model compound interacts with Cr through the imide group, while very little interaction is observed with Cu. The ODA model compound (oxydianiline) interacts with Cr via the ether linkage and the terminal amino groups, whereas very little interaction is observed with Cu.


1992 ◽  
Vol 276 ◽  
Author(s):  
Y Z. Chu ◽  
H. S. Jeong ◽  
R. C. White ◽  
C. J. Durning

ABSTRACTIn this work a blister test is applied to study the adhesion of thin films to substrates. In the blister test one injects a fluid at constant rate at the interface between the substrate and an overlayer to create a “blister”. The fluid pressure is measured as function of time. An analysis gives a reliable way of calculating the adhesion energy Ga. from the time-dependent pressure data. The method was applied to a variety of systems including polymer/polymer, polymer/silicon and polymer/metal interfaces. The results show that the test is very sensitive and is able to determine small adhesion energies inaccessible in conventional peel tests. This work demonstrates that the blister test provides a means of relating the mechanical strength of an interface to its microscopic dynamic and structural features.


Polymer ◽  
1999 ◽  
Vol 40 (14) ◽  
pp. 3989-3994 ◽  
Author(s):  
Dong Ha Kim ◽  
Won Ho Jo

2002 ◽  
Vol 124 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Qizhou Yao ◽  
Jianmin Qu

Debonding of polymer-metal interfaces often involves both interfacial and cohesive failure. Since the cohesive strength of polymers is usually much greater than the polymer-metal interfacial strength, cohesive failure near the interface is usually desired for enhancing the interfacial adhesion. Roughened surfaces generally produce more cohesive failure; therefore, they are used commonly in practice to obtain better adhesion. This paper develops a fracture mechanics model that can be used to quantitatively predict the amount of cohesive failure once the surface roughness data are given. An epoxy/Al interface was investigated using this fracture mechanics model. The predicted amount of cohesive failure as a function of surface roughness compares very well with the experimentally measured values. It is believed that this model can be extended to other polymer–metal interfaces. Contributed by the Electronic and Photonic Packaging Division for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received by the EPPD.


Sign in / Sign up

Export Citation Format

Share Document